GIS IBERICA S.L

Pipe Trades Prow

The Pipe Trades Pro ${ }^{\text {TM }}$ Advanced Pipe Trades Math Calculator has been specifically designed for today's pipe trade professionals. No matter what Pipe Trade you work in, you'll find it easy to use, fast, accurate, and reliable. Quickly calculate Offsets, Rolling Offsets, and Cutbacks. Immediately access Pipe Material and Type data, and Pipe Size dimensions. The Pipe Trades Pro will help you on the jobsite or in the office.

- Built-in data and Pipe Sizing for 7 different Piping Materials
- Linear and Rolling Offset Solutions for Known and Unknown Fitting Angles
- Fitting Take-out and Cut Mark Solutions
- Cutback Solutions
- Trigonometric Solutions
- Circle, Circumference and Area Solutions
- Fractional Feet-Inch Input/Output
- Simple US/Metric and Flow Conversions and Solutions
- Problems Involving All Architectural Fractions - 1/21/64ths
- And more

TABLE OF CONTENTS

GETTING STARTED 7
Order of Operations 7
Using Parentheses 8
KEY DEFINITIONS 9
Basic Function Keys 9
Dimensional Function Keys 10
Weight/Volume Functions 11
Circle Key 11
Trigonometric Keys 11
Pipefitting Project Keys 12
Miscellaneous Functions 14
PREFERENCE SETTINGS 15
ENTERING DIMENSIONS 17
Linear Dimensions 17
Square and Cubic Dimensions 17
ENTERING CONVERSIONS 18
Linear Conversions 18
Volume Conversions 18
Weight/Volume Conversions 18
Temperature Conversions 19
Flow Rate Conversions 20
BASIC MATH OPERATIONS 21
Adding/Subtracting Strings of Dimensions 21
Multiplying Dimensions 21
Dividing Dimensions 21
PERCENTAGE CALCULATIONS 22
Calculating Percentages 22
MEMORY OPERATION 23
Using M+ 23
Using Memory Storage Keys (M1-M9) 24
PAPERLESS TAPE 25
Paperless Tape Function - Normal Mathematics 25
CALCULATE COSTS 26
USING THE PIPE TRADES PRO 27
Pipe Material Key 27
Pipe Size Key 28
Elbow Type 29
Simple Offset - Known Bend Angle 30
Simple Offset - Unknown Bend Angle 31
Simple Offset - Cut Length 32
Rolling Offset - Known Bend Angle 33
Rolling Offset - Unknown Bend Angle 34
Rolling Offset - Cut Length 35
Concentric Pipe Bend Cutback 37
Calculate Take-Out and Butt Weld Elbow Cut Marks 38
Cut Length - Known Take-Out Value 39
Combination Rolling Offset 40
Horizontal to Horizontal 42
Calculating Drop 43
Calculating Flow Rate 43
Velocity 45
Pressure Loss 46
Pressure/Force 48
Area 48
Pipe Capacity 49
Weight of Filled Pipe 49
Force 50
Circle Area and Circumference 51
Basic D:M:S and Trigonometry Examples 51
APPENDIX A 53
Pipe Materials 53
Pipe Types For Each Material 53
APPENDIX B Default Settings 54
APPENDIX C Preference Settings 55
APPENDIX D Constants 57
APPENDIX E Care Instructions 57
APPENDIX F 58
Accuracy/Errors 58
Error Codes 58
Auto Shut-Off 58
Batteries 59
Reset 59
APPENDIX G - Formulas 60
Area Formulas 60
Surface Area/Volume Formulas 61
WARRANTY, REPAIR AND RETURN INFORMATION 62
6 - Pipe Trades Pro ${ }^{\text {TM }}$

GETTING STARTED

You may want to practice getting a feel for your calculator keys by reading through the key definitions and learning how to enter basic feet-inch-fractions and metric, how to store values in Memory, etc., before proceeding to the examples.

Order of Operations

Unlike other Calculated Industries calculators, which use the Chaining Method of Operations, this calculator uses the Order of Operation Method.

- Chaining Method ("as entered"): $10+4 \times 5=70$
- Order of Operations: $10+4 \times 5=30$

The Order of Operations method of computing is based on the following order of precedence:

1) Expressions inside of parentheses
2) Single-variable functions that perform the calculation and display the result immediately (trig functions, square, square root, x^{y}, percent, reciprocal, angle conversions)
3) Multiplication and division
4) Addition and subtraction
5) Equals (completes all operations)

If you need to calculate using the Chaining Method, you can change this in your calculator Preference Settings.

Using Parentheses

Your calculator has parentheses keys \square and \rrbracket for performing mathematical operations. (In the Order of Operations method, expressions inside of parentheses are performed first.)

The calculator offers up to 21 levels of parenthesis:

1) First parenthesis level opened - press \int for one rightsided parenthesis.
2) Second level opened - press a second time for two right-sided parentheses 0 (0)
3) Third level opened - press $\sqrt{0}$ a third time for three rightsided parentheses 010 .
4) Fourth level opened - press a fourth time for four rightsided parentheses 0010

Numbers of levels greater than four are shown in the upper left corner of the display.

KEY DEFINITIONS

Basic Function Keys

On/C On/Clear Key - Turns on power. Pressin
Clears the last entry and the display. Pres
clears all non-permanent values.
Off - Turns all power off. Clears all non-
permanent memory.

$\oplus \in \mathbb{X}$ Arithmetic operation keys

$0-9$	Keys used for entering
and	numbers.

Conv	Convert - Used with the dimensional keys to convert between units or with other keys to access special functions.
Stor	Store - Used for storing values. Red Recall - Used with other keys to recall stored values and settings.
Conv Rc]	Memory Clear (M-R/C) - Clears Memory without changing current display.
$\mathbf{M +} \quad$	Accumulative Memory - Adds value to Accumulative Memory.
Conv $\mathbf{M +}$	$(M-)$ - Subtracts value from Accumulative Memory.

Dimensional Function Keys

Feet
-
Fraction Bar - Used to enter fractions. Fractions can be entered as proper ($1 / 2,1 / 8,1 / 16$) or improper $(3 / 2,9 / 8)$. If the denominator (bottom) is not entered, the calculator's fractional accuracy setting is automatically used. Results are always shown in typical building fractional format.
Conv 1 Gallons per Minute (gpm) - Enters or converts to gallons per minute.
Conv 2 Liters per Second (l/s) - Enters or converts to liters per second.
Conv 4 Cubic Feet per Minute (cfm) - Enters or converts to cubic feet per minute.
Conv 5 Cubic Feet per Second (cfs) - Enters or converts to cubic feet per second.
Conv 3 Degrees Celsius (${ }^{\circ} \mathrm{C}$) - Enters or converts to degrees Celsius.
Conv 6 Degrees Fahrenheit (${ }^{\circ}$ F) - Enters or converts to degrees Fahrenheit.

Millimeters - Enters or converts to millimeters.
Conv mm
Meters (m) - Enters or converts to meters.
Conv 8 Gallons - Enters or converts to gallons.
Conv 9 Liters - Enters or converts to liters.
10 - Pipe Trades Pro ${ }^{\text {tm }}$

Weight/Volume Functions

Stor \rightarrow Weight/Volume - Stores a new weight volume as pounds per cubic feet or other format as shown below. Default value is 62.42796 pounds per cubic foot of water ($1000 \mathrm{~kg} / \mathrm{m}^{3}$).

- Pounds per cubic foot
- Pounds per cubic inch
- Pounds per gallon
- Kilograms per cubic meter
- Kilograms per liter

Conv 7 Pounds (Ibs) - Enters or converts a weight or volume value to pounds.
Conv 1 Kilograms (kg) - Enters or converts a weight or volume value to kilograms.

Circle Key

Circle - Enters diameter and calculates circle area and circumference.

Trigonometric Keys

Finds the sine of a degree or undimensioned value. Arcsine (sin${ }^{-1}$) - Gives the angle in degrees for the Sine value. Finds the Cosine.
Arccosine ($\cos ^{-1}$) - Gives the angle in degrees for the Cosine value.
Finds the Tangent.
Conv Tan Arctangent (tan ${ }^{-1}$) - Gives the angle in degrees for the Tangent value.

Pipefitting Project Keys

Enters or calculates a linear Slope, Slope Angle, or Percent Grade. The linear slope is the amount of "Offset" over 12 inches of "Run." Values may be entered as:

- a Dimension: 9 Inch Ahcoo
- an Angle or Degrees: 4 Ange
- a Percentage (percent grade): $75 \mathrm{Conv} \rightarrow$ ATgied

Once an angle or slope has been entered, consecutive presses of Aggis) will convert to the remaining formats listed above.

Conv Alsied Take-Out (T.O./Arc) - Used to enter or solve fitting Take-Outs when calculating pipe cut lengths. Calculates inner, center, and outer arc lengths for marking field cut fittings.

Calculates or enters the Offset (Rise).
Conv Oifset Welder's Gap - Defines the Welder's Gap subtracted from the end to end pipe length calculation. Default value is $1 / 8^{\prime \prime}, 0$ is a valid value.

Run Enters or calculates the Run.
Travel Enters or calculates the Travel (Diagonal).

pipe
 Conv fieil

Defines the Pipe Material. (Steel, Stainless Steel, Brass, Aluminum, Cast Iron, PVC or Copper).
Elbow Type - Defines the type of radius (long or short) and whether a factory or field cut 45° Butt Weld elbow is being used. Default value is Butt Weld - Long.

Enters the nominal Pipe Size and provides data pertaining to the entered size.

Conv $\begin{gathered}\text { Pipe } \\ \text { size }\end{gathered}$

Pipe Type - Defines the Pipe Type based on Pipe Material.

Conv Run Cutback - Calculates pipe Cutback after Bend Angle and Offset are entered.
Conv frovel Rolling Offset (Roll)- Calculates Rolling Offset pipe length.
Conv 1 Flow - Enter or calculate volumetric Flow Rate through a pipe.

Conv 1 Velocity - Enter or calculate Velocity and convert between feet per second, feet per minute, and meters per second.

Conv Circle Pressure - Enter Pressure value. Calculate Pressure loss. Convert between units of pressure.

Conv $x^{2} \quad$ Force - Enter or calculate Force and convert between lbf, newton.

Conv $\sqrt{x} \quad$ Area - Enter pipe area for use in Flow, Velocity, Pressure, and Force calculations. Calculate Area given values for Flow/Velocity or Force/Pressure.

Miscellaneous Functions

(1)Open parenthesis key

1 Close parenthesis key
$x^{\boldsymbol{v}} \quad$ Enters an exponential value other than x^{2} or Square Root.
Conv $x^{x y}$ Exponential Root Value - Enters the exponential root value ($\mathrm{x}^{1 / \mathrm{y}}$).
Conv $\boldsymbol{P i}$ - Displays value of π (3.141593).
Conv 1 Reciprocal $(1 / x)$ - Finds the reciprocal of a number (e.g., 8 Conv 웅 0.125).
Conv - Change Sign (+/-) - Toggle displayed value between minus and plus value.
Conv \boldsymbol{X} Clear AII - Returns all stored values to the default settings. (Does not affect Preference settings.)
x^{2} Squares the value in the display.
Square Root - Calculates the Square Root
Conv 0 Cost - Cost function
Stor 0 Store unit cost
Conv \bullet Degrees:Minutes:Seconds - Converts between D:M:S and decimal degree formats; repeated presses will toggle between the two formats.

Conv \Rightarrow Paperless tape
Conv Stor Preference settings
Backspace Function - Used to delete entries one keystroke at a time (unlike the On/C function, which deletes the entire entry).

Conv \rightarrow Percent function

Stor 1-9 Used to store values in Memory registers 1 through 9.

PREFERENCE SETTINGS

HOW TO SET PREFERENCES

The following sections detail Preference Setting options for the Pipe Trades Pro calculator.
Enter the Preference Mode by pressing Conv Stor (Prefs). Access each category by pressing the Stor key until you reach the desired setting. Within each category, press the \boxplus or

- keys to toggle between individual selections. Press On/C to exit and set your Preference.
Note: Press $\boldsymbol{\text { to advance and press to back up. Pressing }}$ the Stor key continuously in this mode will cycle through all of the Preference Settings.
You may change these settings at any time by repeating the above, and setting in a new preference.
To reset preferences back to factory default settings, turn your calculator off, hold down the \boldsymbol{X} key and turn the calculator back on.

For example, if you wish to display all your dimensional area answers in square meters, press Conv Stor Stor (Area Std), then the \boxplus key until "AREA 0. SQ M" is displayed. Simply exit this mode by pressing $O n / C$ and all your future area answers will be displayed in square meters.
Conv Stor
(Fractional Resolution)
\oplus
\oplus
\boxplus (repeats options)
(

FRAC 0-1/16 INCH
FRAC 0-1/32 INCH
FRAC 0-1/64 INCH
FRAC 0-1/2 INCH
FRAC 0-1/4 INCH
FRAC 0-1/8 INCH
FRAC 0-1/16 INCH
(cont'd)
User's Guide - 15

Second press of Stor:
(Area displays)
円
AREA Std.
AREA 0. SQ FEET
AREA 0. SQ INCH AREA 0. SQ M AREA Std.

Third press of Stor: (Volume displays)

VOL Std.

Fourth press of Stor:	
(Meter Linear displays)	METR 0.000 M
$\boldsymbol{\text { (floating point) }}$	METR FLOAt M
$\boldsymbol{\text { (repeats options) }}$	METR 0.000 M

Fifth press of Stor:
(Decimal Degree displays)
DEG 0.00°
P(floating point)
DEG FLOAt
円 (repeats options)
DEG 0.00°
Sixth press of Stor:
(Fractional mode)
\pm (repeats options)

> FRAC Std.
> FRAC COnSt. FRAC Std.

Seventh press of Stor:
(Mathematical Operation)
\oplus (repeats options)

MATH OrdEr
MATH CHAIn MATH OrdEr

ENTERING DIMENSIONS

Linear Dimensions

When entering feet-inch values, enter dimensions from largest to smallest - feet before inches, inches before fractions. Enter fractions by entering the numerator (top number), pressing I (Fraction Bar key) and then the denominator (bottom number).

Note: If a denominator is not entered, the fractional setting value is used.

Examples of how linear dimensions are entered (press On/C after each entry):

DIMENSIONS

KEYSTROKE
5 feet

5 Feet	
5 Feet 1 Inch 112	
17	5 Conv mm
	(2) 0 mm

Square and Cubic Dimensions

Examples of how square and cubic dimensions are entered (press On/C after each entry):

DIMENSIONS
14 square inches
11 square feet
3.3 square meters

3 cubic feet

KEYSTROKE

ENTERING CONVERSIONS

Linear Conversions

Convert 10 feet 6 inches to other dimensions, including metric:

KEYSTROKE

10 Feet 6 Inch	10 FEET 6 INCH
Conv Feet ${ }^{*}$	10.5 FEET
Conv Inch *	126. INCH
$\mathrm{mm}(\mathrm{mm})$	3200.4 MM
Conv $\mathrm{mm}(\mathrm{m})$	3.200 M

*Repeated presses of Feet or Inch will toggle between feet-inchfractions and decimal feet or inches.

Volume Conversions

Enter 8.5 gallons and convert to liters:
KEYSTROKE
DISPLAY
On/C On/C 0.
(8) 5 Conv 8

GAL 8.5
Conv 9
LITR 32.176

Weight/Volume Conversions

Convert 20 pounds to kilograms:

On/C On/C	0.
2 Conv 7 (Pounds)	20 LB
Conv 1 (Kilograms)	9.071847 KG

Convert 5 cubic feet of water to pounds. Then convert the pounds to kilograms:

5 CU FEET

312.1398 LB
141.5842 KG

Convert a cubic meter of concrete to pounds. The concrete weighs 111 lbs per cubic foot.

KEYSTROKE
On/C On/C
1 1 Stor $\oplus(W t / V o l)$
1 Conv mm mm mm
Conv 7 (Pounds)
Conv \boldsymbol{X}^{*}
*Restores default weight conversion to the weight of water (62.42796 Ibs Per Cubic Foot).

Temperature Conversions

Enter a temperature value, then Conv followed by (6) or (3) for Fahrenheit or Celsius, respectively.

Convert $78{ }^{\circ} \mathrm{F}$ to a ${ }^{\circ} \mathrm{C}$ temperature:
KEYSTROKE
DISPLAY
On/C On/C
0.

7 (8 Conv ($6\left({ }^{\circ} F\right)$
Conv (3) $\left(^{\circ} \mathrm{C}\right)$
$25.55556{ }^{\circ} \mathrm{C}$
Convert $11{ }^{\circ} \mathrm{C}$ to a ${ }^{\circ} \mathrm{F}$ temperature:

Flow Rate Conversions

You can enter a Flow value in cubic feet per second, liters per second, cubic feet per minute, or gallons per minute, then convert to other units.

Enter 47 cfs, then convert to other units:

BASIC MATH OPERATIONS

Adding and Subtracting Strings of Dimensions

Add the following measurements：
－ 6 feet 2－1／2 inches
－ 11 feet 5－1／4 inches
－ 18.25 inches
Then subtract 2－1／8 Inches．

KEYSTROKE	DISPLAY
（6）Feet 2 Inch 1 I 2 P	
11 Feet 5 Inch 1 14	
$18 \cdot 2$［ Inch $⿴ 囗 ⿱ 一 一$	19 FEET 2 INCH
－2 Inch 1180	18 FEET 11－7／8 INCH

Multiplying Dimensions

Multiply 5 feet 3 inches by 11 feet 6－1／2 inches：
KEYSTROKE
DISPLAY
（5）Feet 3 Inch X 1 Feet
（6）Inch 12 10
60．59375 SQ FEET

Dividing Dimensions

Divide 30 feet 4 inches by 7 inches：
KEYSTROKE DISPLAY
（3）Feet 4 Inch $\div 7$ Inch $\because \quad 52$.
Divide 20 feet 3 inches by 9：
KEYSTROKE
DISPLAY
（2）Feet 3 Inch 9 9
2 FEET 3 INCH

PERCENTAGE CALCULATIONS

The Conv \rightarrow keys can be used for finding a given percent of a number or for working add-on, discount or division percentage calculations. It can be used with any type of number, in any dimension (feet, inch, millimeter, etc.) and any type of convention (non-dimensioned, linear, square or cubic).

Calculating Percentages

Find 18% of 500 feet:
KEYSTROKE DISPLAY

On/c On/c
0.
5)(0) (Feel $1 \mathbf{8}$

Conv -
90 FEET 0 INCH
Take 20\% from 286 Feet 6 inches:
KEYSTROKE
DISPLAY
On/C On/C
0.
(2) 8 (reet (6 Inch - 2) 0

Conv ${ }^{-}$
229 FEET 2-3/8 INCH
Add a 10% waste allowance to 275 feet of pipe:
KEYSTROKE
DISPLAY
On/C On/C
0.
(2) (7) 5 Feet \boldsymbol{T} (0 Conv -

22 - Pipe Trades Pro ${ }^{\text {tM }}$

MEMORY OPERATION

Whenever the $\mathbf{M +}$ key is pressed, the displayed value will be added to the Memory. Other memory functions:

FUNCTION

KEYSTROKE
Add to Memory
Subtract from Memory
Recall total in Memory
Display/Clear Memory
Clear Memory

Conv $\frac{\text { M }+1}{\text { M }+}$	
	RC] M+
	Rcl R
Conv Rc]	

Memory is semi-permanent, clearing only when you:

1) turn off the calculator;
2) press Rcl Rc];
3) press Conv Rc];
4) press Conv \boldsymbol{X} (Clear All).

When Memory is recalled (Rc] M+), consecutive presses of $\mathrm{M}+$ will display the calculated average and total count of the accumulated values.

Using M+

KEYSTROKE	DISPLAY
3 5 5 M+	M+355. ${ }_{\text {m }}$
2 5 M+	M+ 255. [
7 (4) Conv M+ (M-)	M-745. m
Rc] M+	TTL - 135.m
M+	AVG - 45. 罒
M+	CNT 3. m
Rc] Rc]	M+-135.

Using Memory Storage Keys (M1 - M9)

In addition to the standard cumulative Memory (as previously described), your calculator has nine independent Storage
Registers - M1 through M9 - that can be used to permanently store single, noncumulative values. The following example shows the use of M1 (Stor 1). To use M2-M9, replace the presses of the 1 key with presses of the corresponding number key (2-(9).

You can replace a value in one of these Memory registers by storing a new value in place of the stored value.

FUNCTION

KEYSTROKE

Store single value in M1	Stor 1
Clear M1	OTor 1
Recall M1	Rc: 1

Example: Store 175 into M1, recall the value, and then clear the value:

KEYSTROKE

DISPLAY
17 Stor 1 M-1 175.

Ofi On/C

0.

RCI 1
(Stor 1
M-1 175.
M-1 0.

PAPERLESS TAPE

The Paperless Tape allows you to display and review the last 30 entries of a calculation. Conv ∇ accesses the tape mode and \boxplus or - scrolls forward or backward through the entries. Note: The Paperless Tape is cleared each time On/C is pressed twice, the unit is shut off, or an All Clear (Conv Х) is performed.

Paperless Tape Function - Normal Mathematics

1. Enter a string of numbers:

KEYSTROKE

On/C On/C	0.
4 Feet P	4 FEET 0 INCH
5 Feet $\boldsymbol{}$	9 FEET 0 INCH
6 Feet T	15 FEET 0 INCH
7 Feet \bigcirc	22 FEET 0 INCH

2. Access the Tape function:

TTL= 22 FEET 0 INCH
3. Scroll from first value and total:

4. Scroll to last two values:

04+ 7 FEET 0 INCH 03+ 6 FEET 0 INCH
5. Exit Tape function and continue:

TTL= 22 FEET 0 INCH 22 FEET 0 INCH 24 FEET 0 INCH
*Displays total before exiting.

CALCULATE COSTS

The Cost function provides the total cost for material, based on a stored unit cost and an entered quantity of material. This is convenient for quickly calculating costs on a job that requires many of the same kind of items.
Example: You are doing an installation that includes 120 feet of pipe that comes in 10 ' lengths at $\$ 3.21$ per 10' pipe.

KEYSTROKE

DISPLAY
Store the unit cost of the pipes needed:
On/C On/C
0.
(3) - (2) Stor 0

COST PER 3.21
Enter the number required:

$$
\text { (1) } 2
$$

Calculate total cost:
Conv (O) (Cost)
TTL\$ 38. 52
You can then quickly calculate costs for a different number of the same item.
KEYSTROKE DISPLAY

On/C On/C 0.
17
Conv (0 (Cost)
TTL\$ 54. ${ }^{57}$
You can also find costs of different items on the fly without overwriting your stored unit cost.
Determine the cost of 17 fittings at $\$ 2.89$ each:
KEYSTROKE
DISPLAY
Enter number of pipes needed:
On/C On/C 0.
(1) 7

Multiply by the cost:
(2) 8 - 9

USING THE PIPE TRADES PRO

Pipe Material Key

The Pipe Material key lets you choose a pipe material, which defines the available sizes and surface roughness used by the calculator. See Appendix A on page 53 for more information. The default material for the Pipe Trades Pro is Steel, but the user can choose from material types as shown.

KEYSTROKE DISPLAY

On/C On/C Prein (Steel)
Preilil (Stainless Steel)
Herill (Brass)
Higiol (Aluminum)
Praid (Cast Iron)
Figitil (Plastic)
(fidill (Copper)

The last material setting displayed is selected, and the calculator will retain your setting even after the power has been turned off. Once a material is selected, you can easily toggle through the available types (Schedules, etc.) using the Pipe Type function (Conv upon the material setting.

Keystrokes below show the pipe types available for Plastic (press Figill until "PLAStIC" is shown in the display).
［限粱（Schedule 80）
Fig（Schedule 120）
firi（SDR 21）

fig（SDR 32．5）
firia（SDR 41）

TYPE 80 PLAStIC
TYPE 120 PLAStIC
TYPE SD21 PLAStIC
TYPE SD26 PLAStIC
TYPE SD32 PLAStIC
TYPE SD41 PLAStIC

You can also directly enter a Pipe Type，e．g．，Schedule 80，by entering a number corresponding to the pipe type．

KEYSTROKE
On／c On／c
Hisin
（8）Conv 䟮

DISPLAY

Pipe Size Key

When you have chosen a Pipe Material and Type and then
enter Pipe Size，the pipe data will be displayed．
For this example we are using 3＂Steel，Schedule 80 pipe．

KEYSTROKE

DISPLAY

Conv \boldsymbol{X}

1．Choose the Pipe Material：

MATL StEEL
2．Enter the Pipe Type：

TYPE 80 StEEL
3．Enter the Pipe Size：
3 lich
3 INCH
4．Toggle through the Pipe data：

WARNING: If you are using 12 " Schedule 40 pipe, the Wall Thickness and Weight outputs of the Pipe Size function are incorrect for the materials below. The error understates the LB/FEET Pipe Size outputs. This table has the corrected 12 " Schedule 40 pipe data.

Material (12" SCHED 40)	Wall Thickness	LB/FEET	Filled LB/FEET
Steel	.406 NCH	53.5246	150.5755
Brass	.406 NCH	59.9475	156.9985
Aluminum	.406 NCH	18.7336	115.7845
Cast Iron	.406 NCH	48.7074	145.7583

Elbow Type

The Elbow Type function lets you chose between long or short radius, and between factory and field cut 45° Butt Weld (B.W.) elbow types. The default value is for long radius, factory cut 45° B.W. elbow type.

The Elbow option setting has an impact on the Take-Out calculations as the radii vary between long and short Butt Weld fittings. Additionally, factory made 45° B.W. elbow fittings can have a different Take-Out calculation from the field cut variants.

This function toggles the Elbow types between the following options:

Butt Weld - Long

Default. Use this option when utilizing 90° long radius or factory 45° long radius B.W. elbow fittings, or any odd-angle long radius fitting cut from a 90° B.W. elbow.

Butt Weld - Short

Use this option when utilizing 90° short radius or factory 45° short radius fittings, or any odd-angle short radius fitting cut in the field from a 90° B.W. elbow.

Field Cut - Long

Use this option when utilizing long radius B.W. elbows, or any odd-angle long radius fitting cut from a 90° B.W. elbow, including a 45° B.W.

Field Cut - Short

Use this option when utilizing short radius B.W. elbows, or any odd-angle short radius fitting cut from a 90° B.W. elbow, including a 45° B.W.

Conv \%eide (Defaul)	BW-L EL. tYPE
\%ein	BW-S EL. tYPE
Hia	FC-L EL. tYPE
Hin	FC-S EL. tYPE
\%idid (Default)	BW-L EL. tYPE

Simple Offset - Known Bend Angle

Find the center-to-center travel for a pipe offset with a 24 "
Offset using 45° factory made long radius butt weld elbows.

1. Enter Offset:
(2) (4) Inch Oifset

OFST 24 INCH
2. Enter bend angle:
(4) 5 Aggog
$\angle \varnothing 45.00^{\circ}$
3. Find the pipe length:

Travel
TRAV 33-15/16 INCH

Simple Offset - Unknown Bend Angle

Find the center-to-center travel and unknown bend angle for a pipe offset with a 16 " Offset and 27 " Run.

KEYSTROKE
DISPLAY
On/C On/C

1. Enter Offset:

16 Inch Oiliset
OFST 16 INCH
2. Enter Run:
(2) 7 Inch Run

RUN 27 INCH
3. Find the pipe length:

Travel
TRAV 31-3/8 INCH
4. Find the bend angle:

Aloge
$\angle \varnothing 30.65^{\circ}$
Continue pressing the Travel key to view all related values.

Simple Offset - Cut Length

Find the cut length (end-to-end) for a pipe offset with a 10"
Offset and a 12" Run. The bend angle is unknown. This example assumes 6 " Steel, factory made long radius butt weld elbows are used. The following example shows an optional override of the Welder's Gap when working with Stainless Steel.

Note: All Take-Out calculations are based on Carbon Steel O.D. See the Cut Length - Known Take-Out Value example to solve Cut Lengths for known Take-Out values.

KEYSTROKE

Conv X

ALL CLEArEd

1. Select Stainless Steel:

figit figit

MATL S.StEEL
2. Enter Pipe Size:
(6) Inch fifie

40 SIZE 6 INCH
3. Enter 0 for Welder's Gap:
(Conv Oifiset
GAP 0 INCH
4. Enter Offset:

10 Inch Oiliset
OFST 10 INCH
5. Enter Run:
(1) (2) Inch Run

RUN 12 INCH
6. Find the pipe length:

Travel
Travel
Travel
Travel
Travel
Travel

The cut length for the pipe is 9 and $1 / 8$ inches and bend angle is 39.81°. Included in the outputs are the arc lengths to be used to cut your butt weld elbow to the calculated bend angle. These are inner arc length of 3 and $15 / 16$ inches, center arc length of 6 and $1 / 4$ inches, and outer arc length of 8 and 9/16 inches.

Note: To return the Welder's Gap to the default 1/8", press
Conv \boldsymbol{X} to reset your calculator back to default values.

Rolling Offset - Known Bend Angle

Find the center-to-center travel for a rolling pipe offset with a $4 "$ Roll and a 24 " Offset using 45° factory-made long radius butt weld elbows.

1. Enter Offset:
2) (4) Inch Oifsel

OFST 24 INCH
2. Enter bend angle:
4) (5) अfoge
3. Enter the Roll and calculate the pipe length:
(4) Inch Conv Travel

LNTH 34-7/16 INCH
Continue pressing the Travel key to view all related values.

Rolling Offset - Unknown Bend Angle

Find the center-to-center travel for a rolling pipe offset with a 6 $1 / 2^{\prime \prime}$ Roll, a 17 " Offset, and an advance of 28 ". The bend angle is unknown. This example assumes factory made long radius butt weld elbows will be used to create degreed fittings.

Conv \boldsymbol{X}

1. Enter Offset:

17 Inch Oflset
OFST 17 INCH
2. Enter the advance:
(2) 8 Inch Run (Advance)

RUN 28 INCH
3. Enter the Roll and calculate the pipe length and unknown bend angle:
6 linch 112 Conv ricevel frovel

LNTH 33-3/8 INCH
$\mathrm{FIT}^{\circ} 33.02^{\circ}$

Continue pressing the Travel key to view all related values.

Rolling Offset - Cut Length

Find the end-to-end pipe length for a rolling pipe offset with a 13 " Roll, a 24 " Offset, and an advance of $32^{\prime \prime}$. The bend angle is unknown. This example assumes 6 " Steel, factory made long radius butt weld elbows are used with a Welder's Gap of $3 / 32^{\prime \prime}$. Note: the default Welder's Gap is $1 / 8$ ".

Note: All Take-Out calculations are based on Carbon Steel O.D. See the Cut Length - Known Take-Out Value example to solve Cut Lengths for known Take-Out values.

1. Enter Pipe Size:

STD SIZE 6 INCH

2. Change the default Welder's Gap from $1 / 8^{\prime \prime}$ to $3 / 32$ ":

313 Conv Oifset *
GAP 0-3/32 INCH
3. Enter Offset:
(2) (4) Inch Oifset

OFST 24 INCH
4. Enter the advance:
(3) 2 nch Run (Advance)

RUN 32 INCH
5. Enter the Roll and calculate the pipe length and unknown bend angle:
1 (3) Inch Conv trovel (Roll)
Travel
Travel
Travel
LNTH 42-1/16 INCH
CUT 35-1/4 INCH
TO 3-5/16 INCH
GAP 0-3/32 INCH
frovel
FIT $^{\circ} 40.46^{\circ}$
fravel
IARC 4-1/32 INCH
frovel CARC 6-11/32 INCH
travel
*Note: Setting welder's gap to $3 / 32$ inch will temporarily set the outputs to $1 / 32$ fractional resolution. To keep outputs in their current fractional resolution (default is $1 / 16$) press On/C once after entering the welder's gap. For example, if you keep the fractional resolution at $1 / 16$, the outputs above for IARC would be 4 inches, and CARC would be $6-3 / 8$ inches.

The cut length for the pipe is 35 and $1 / 4$ inches and bend angle is 40.46°. Included in the outputs are the arc lengths to be used to cut your butt weld elbow to the calculated bend angle. These are inner arc length of 4 and $1 / 32$ inches, center arc length of 6 and $11 / 32$ inches, and outer arc length of 8 and 11/16 inches.

Concentric Pipe Bend Cutback

Find the pipe Cutback when you are running pipes through a 45° bend with a 10 " offset.

1. Enter the bend angle:
(4) 5 Algos
2. Enter the Offset:

1 (O) Inch Oiliset
OFST 10 INCH
3. Calculate the Cutback:

Conv Run

CUT 4-1/8 INCH

Calculate Take-Out and Butt Weld Elbow Cut Marks

The Take-Out function can be used to quickly solve a Take-Out and butt weld elbow cut marks for a known bend angle and Pipe Size.

Find the arc lengths for an odd bend angle of 37° for $12^{\prime \prime}$ pipe.
Note: All Take-Out calculations are based on Standard type steel pipes. O.D. See the Cut Length - Known Take-Out Value example to solve Cut Lengths for known Take-Out values.

KEYSTROKE DISPLAY

Conv \boldsymbol{X}

1. Enter the Pipe Size:

STD SIZE 12 INCH
2. Enter the known bend angle:

3. Calculate the Take-Out and Arc Lengths:

TO 6 INCH
IARC 7-1/2 INCH CARC 11-5/8 INCH OARC 15-3/4 INCH

Continue pressing the 당ํid key to view all related values.

Cut Length - Known Take-Out Value

The Pipe Trades Pro can solve cut lengths for materials and fittings not currently built into the calculator by entering a known Take-Out value.
Find the cut length (end-to-end) for a pipe offset with a 10" Offset and bend angle of 45°. This example assumes 4 " Type 40 PVC, with a known Take-Out value of 2 and $3 / 16$ inches.

Note: Override the Welder's Gap for this example.
KEYSTROKE
DISPLAY

On/C On/C

1. Select PVC:

Figili (press until PLAStIC id displayed)
PLAStIC
2. Enter Pipe Size:
(4) Inch ${ }^{\text {fipe }}$

40 SIZE 4 INCH
3. Enter Offset:
(1) (Inch Oifiset

OFST 10 INCH
4. Enter bend angle:
(4) 5 Aggo
$\angle \varnothing 45.00^{\circ}$
5. Enter known Take-Out:

2 Inch 3 (6 Conv Agge

TO 2-3/16 INCH
6. Enter 0 for Welder's Gap:

(0 Conv Oiliset

GAP 0 INCH
7. Find the pipe cut length:

Travel
Travel
Travel

TRAV 14-1/8 INCH CUT 9-3/4 INCH TO 2-3/16 INCH

Continue pressing the Travel key to view all related values.
The cut length for the Type 40 PVC pipe is 9 and $3 / 4$ inches when using 4 ", 45° fittings with a user-defined Take-Out value of 2 and $3 / 16$ inches.

Note: To return the Welder's Gap to the default 1/8", press Conv \boldsymbol{X} to reset your calculator back to default values.

Combination Rolling Offset

Unlike a regular rolling offset, the entry and exit fittings for a combination rolling offset are on different planes and therefore have different fitting angles from each other.

Horizontal to Vertical

Find the pipe length, and entry and exit fitting angles for a combination rolling offset with a vertical pipe exit, given a Roll of 23 ", Offset of 15", and Advance of 29". Use the box in Diagram 1 to review the entry and exit pipe perspectives.

KEYSTROKE
DISPLAY

Conv X

1. Solve for the pipe length and entry fitting angle

15 Inch Oifset
(2) Inch Run (Advance)
(2) 3 Inch Conv travel (Roll)

Travel

OFST 15 INCH
RUN 29 INCH
LNTH 39-15/16 INCH
$\mathrm{FIT}^{\circ} 43.44^{\circ}$

Do not clear or reset the calculator.
If the box is oriented in a 2-dimensional perspective (Diagram 2),
a triangle is formed which will allow for an easy solution of the exit fitting angle in step 2.

2. Next, use the Pipe Trades Pro's built-in right-angle functions to solve the triangle in Diagram 2 and calculate the exit fitting angle. Use the pipe length from step 1 as your Travel.

Travel
(1) (5) Inch Run Abcoe
$\angle \varnothing 67.94^{\circ}$

The entry fitting angle (lower pipe fitting in Diagram 1) is 43.44° and the exit fitting angle (upper pipe fitting in Diagram 2) is 67.94°.

Horizontal to Horizontal

In the next example, the same box dimensions are used except the exit fitting now creates a pipe exit horizontally instead of vertically. The entry fitting angle of 43.44° and pipe length of 39 and 15/16 inches remain the same since the dimensions in this example are the same (if they were different, steps 1 and 2 on the previous pages could be repeated to calculate them). However, by re-orienting the box dimensions to show the Advance on the same plane as the horizontal exit fitting (Diagram 3), the exit fitting angle can easily be solved using the Rolling Offset feature.

KEYSTROKE
DISPLAY
On/C On/C
3. Calculate the exit fitting angle.

15 Inch Oifset
(2) 3 Inch Run (Advance)
$2(9$ Inch Conv Travel (Roll)

OFST 15 INCH
 RUN 23 INCH
 LNTH 39-15/16 INCH
 $\mathrm{FIT}^{\circ} 54.84^{\circ}$

Travel

The entry fitting angle is still 43.44°. However, the exit fitting angle is calculated to be 54.84°.

Calculating Drop

If a pipe Run requires 1/8" drop per foot for drainage, how much total drop is required for a 25 Run?

KEYSTROKE
DISPLAY
On/C On/C

1. Enter the Slope (Drop):

118 Alobe
SLP 0-1/8 INCH
2. Calculate the total drop (Offset):
(2) 5 Feet Run Oifset

OFST 0 FEET 3-1/8 INCH

Find the slope of a pipe Run if it drops 6 inches over 50 feet. What is its Angle and Percent Grade?

KEYSTROKE
DISPLAY
On/C On/C
0.

1. Enter the Run:

5 (0) Feet Run
RUN 50 FEET 0 INCH
2. Enter the Offset:

6 Inch Oiliset
OFST 6 INCH
3. Calculate the Slope, Angle and Percent Grade:

SLP 0-1/8 INCH
$\angle \varnothing 0.57^{\circ}$
\% GRD 1.
GRD 0.01

Calculating Flow Rate

If you know the Area and Velocity, you can calculate the Flow Rate. For this example, the velocity is 5 feet per second, and the Area is 1.8 square inches.

1. Enter the Velocity:
(5) Conv) (Velocity)

FPS 5.
2. Enter the Area:

1 - 8 Inch Inch Conv \sqrt{x} (Area)
AREA 1.8 SQ INCH
3. Calculate Flow Rate (default is Gallons per Minute):

Conv 1 (Flow)

GPM 28.05195
4. Convert to different units of flow rates:
(1)(Cubic Feet per Minute)

CFM 3.75
1 (Cubic Feet per Second)
CFS 0.0625
(1) (Liters per Second)
(1)(Cubic Meters per Second)

L/S 1.769803
(I) (Gallons per Minute)

M3/S 0.00177
GPM 28.05195
If you clear the display, you can recall the last Flow Rate shown.
KEYSTROKE
On/C
Rcl Conv 1
If you clear the calculator, you will only recall the last unit shown.

KEYSTROKE
DISPLAY
On/C On/C
RCl Conv 1
If you know the Flow Rate, you can convert to other dimensional units.

KEYSTROKE
DISPLAY
Conv X
(5) Conv 1 (Gallons per Minute)

Conv 4 (Cubic Feet per Minute)
Conv 5 (Cubic Feet per Second)
Conv 2 (Liters per Second)

CFM 0.668403
CFS 0.01114
L/S 0.315451

Velocity

You can enter a known Velocity, calculate Velocity and convert between different units of Velocity.
If you know the Flow and Area, you can calculate Velocity and then convert to other Velocity units. The default is feet per second (FPS). For this example, we know that the Flow is 5 gallons per minute, and the Area is 1.8 square inches.

KEYSTROKE

DISPLAY

Conv \boldsymbol{X}

ALL CLEARED

1. Enter the Flow:

5 Conv (Flow)
GPM 5.
2. Enter the Area:

1-8 8 Inch Inch Conv \sqrt{x} (Area)
AREA 1.8 SQ INCH
3. Calculate Velocity:

Conv 1 (feet per second)
FPS 0.891204
] (feet per minute)
I (meters per second)
FPM 53.47222
M/S 0.271639
If you clear the display, you can recall the last velocity shown.

KEYSTROKE
DISPLAY
On/C
RCI Conv 1
If you clear the calculator, you will only recall the last unit shown.

If you know the velocity, you can convert to other dimensional units.

KEYSTROKE

DISPLAY

Conv \mathbb{X}
5 Conv (Velocity)
© Conv 1 (feet per second)
\boldsymbol{J} (feet per minute)
ALL CLEArEd
FPS 5.
FPS 5.
FPM 300.
D (meters per second)
M/S 1.524

Pressure Loss

If you know Flow/Velocity, Pipe Size and Length, you can calculate Pressure Loss. If no Run (Length) is entered, Pressure Loss per foot is calculated. For this example we will use the default Material, Steel. Calculate for 2" Pipe with a Flow Rate of 4 gallons per minute and then convert to different dimensional units.

KEYSTROKE

DISPLAY

Conv \boldsymbol{X}

ALL CLEArEd

1. Enter the Pipe Size:
(2) lnch 튜웅

STD SIZE 2 INCH
2. Find the Area:

Conv \sqrt{x} (Area)
AREA 3.355605 SQ INCH
3. Enter the Flow Rate:
(4) Conv 1

GPM 4.
4. Calculate Pressure Loss:

Conv Circle
Circle
Circle

PSI PER FEET 0.000205 REY 6120.09
PSF PER FEET 0.029469

Circle
Circle
Circle
Circle
inHG PER FEET 0.000417
HEAD PER FEET 0.000472
BAR PER FEET 0.000014 KPA PER FEET 0.001411 PSI PER FEET 0.000205

Using values above, add the Run (Length) to calculate the Pressure Loss over the length of the pipe.

KEYSTROKE

5) (reet Run

Calculate Pressure Loss

Conv Circle
Circle
Circle
Circle
Circle
Circle
Circle
Circle

PSI 0.010232
REY 6120.09
PSF 1.47346
inHG 0.020833
HEAD 0.023603
BAR 0.000705
KPA 0.07055
PSI 0.010232

You can also change the Flow Rate and recalculate the
Pressure Loss.

KEYSTROKE

 DISPLAY4) Conv 1

Conv Circle
Circle
Circle
Circle
Circle
Circle
Circle
Circle

GPM 40.
PSI 0.575408
REY 61200.9
PSF 82.85877
inHG 1.171543
HEAD 1.32727
BAR 0.039673
KPA 3.9673
PSI 0.575408

Pressure/Force

If you know the Force and Area, you can calculate Pressure and convert the solution to different units of Pressure. For this example the Force is 100 lbf and the Area is 2 square inches.

KEYSTROKE

Conv X

1. Enter the Force:
1) (0) Conv x^{2} (Force)
2. Enter the Area:

2 Inch Inch Conv \sqrt{x} (Area)
3. Calculate Pressure:

Conv Circle
Circle
Circle
Circle
Circle
Circle
Circle

PSI 50.
PSF 7200.
inHG 101.801
HEAD 115.3329
BAR 3.447379
KPA 344.7379
PSI 50.

Area

If you know the Force and Pressure, you can calculate Area. For this example the Force is 85 lbf and the Pressure is 15 psi .

KEYSTROKE

DISPLAY

Conv \boldsymbol{X}

ALL CLEArEd

1. Enter the Force:

8 (5) Conv x^{2} (Force)
LBF 85.
2. Enter the Pressure:

1) 5 Conv Circle (Pressure)

PSI 15.
3. Calculate the Area:

Conv \sqrt{x} (Area)

Pipe Capacity

How many gallons of water will a 20 ' long 6" pipe hold?

KEYSTROKE

On/C On/C

1. Enter the Pipe Size:
(6) Inch 튜웅

STD SIZE 6 INCH
2. Find the Area:

Conv \sqrt{x}
AREA 28.89026 SQ INCH
3. Multiply by the Pipe length:

Х 20 (reet
4.012536 CU FEET
4. Find the Pipe capacity:

Conv 8
GAL 30.01586

Weight of Filled Pipe

Find the weight of a 10 foot length of 6 inch Type 5 stainless steel pipe filled with water:

KEYSTROKE
DISPLAY
On/C On/C
0.

1. Choose the Pipe Material:

Hein
MATL S.StEEL
2. Choose the Pipe Type:

TYPE 5 S.StEEL
3. Choose the Pipe Size:

5 SIZE 6 INCH
4. Find the weight of one foot of water-filled pipe:
fific (6 times)
FILL SIZE 21.71418 LB PER FEET
5. Find the weight of the filled 10 ' length of pipe:
$\boldsymbol{x} 10 \boldsymbol{0}$

(cont'd)

Find the weight of the same length of pipe filled with ethanol (one gallon of ethanol weighs 6.59 lbs.$)$ Do not clear previous keystrokes.

KEYSTROKE

DISPLAY

1. Enter the weight of one gallon of ethanol:
(6) 59 Stor P円円

LB/G 6.59
2. Find weight of one foot of ethanol-filled pipe:

Fipe (7 times) FILL SIZE 18.77419 LB PER FEET
3. Find the weight of the filled 10 ' length of pipe:
$\mathbf{x} 100$
187.7419 LB

Conv X
ALL CLEArEd
(Restores default weight conversion to the weight of water-62.42796 Ibs per cubic foot.)

Force

Given Pressure and Area, you can calculate Force and convert between newtons and pound-force. For this example the Pressure is 100 PSI and the Area is 2 square inches.

KEYSTROKE

DISPLAY

Conv \boldsymbol{X}

ALL CLEArEd

1. Enter Pressure and Area
(1) (0) Conv Circle
(2) Inch Inch Conv \sqrt{x}
2. Calculate Force

Conv x^{2}

x^{2}

PSI 100. AREA 2. SQ INCH

LBF 200.
NEWT 889.6443

Circle Area and Circumference

Find the area and circumference of a circle with a diameter of 25 Inches:

KEYSTROKE

Basic D:M:S and Trigonometry Examples

Converting Degrees:Minutes:Seconds
Convert $23^{\circ} 42^{\prime} 39^{\prime \prime}$ to decimal degrees:

KEYSTROKE
On/C On/C 0.
DISPLAY
(2) (3)(4) $\cdot(3$

Conv $\bullet(d m s \triangleleft d e g)$
DMS 23.42.39
23.71°
Convert 44.29° to degrees:minutes:seconds format:
KEYSTROKE
DISPLAY
On/C On/C
0.
(4) 4) - (2) 9 Conv $\bullet(d m s \triangleleft d e g)$

DMS 44.17.24
Note: Improperly formatted entries will be redisplayed in the correct convention after any operator key is pressed. For example, $30^{\circ} 89^{\prime}$ entered will be corrected and displayed at $31^{\circ} 29^{\prime} 0^{\prime \prime}$ or 31.48°.

Trigonometric Functions

Trigonometric functions are available on the Pipe Trades Pro calculator.

The drawing and formulas below list basic trigonometric formulas, for your reference:

Given side A and angle a, find:
Side C
$A \div a \cos \theta$
(e.g., 3 Feet $\div 5 \cdot 1 \cdot 3 \cos \theta$)

Side B
Angle b
A XaTan \square
90°-a \boldsymbol{B}
Given side A and angle b, find:

Side B	A 9 b Tan $\square^{\text {a }}$
Side C	A $\%$ b \sin -
Angle a	90°-b ${ }^{\text {b }}$

Given side B and angle a, find:
Side A

Given side C and angle a, find:
Side A
$C \boxtimes a \cos \nabla$
Side B
$C \boldsymbol{X}$ a $\sin \boldsymbol{\theta} \boldsymbol{\theta}$

Given side A and side C, find:
Angle a
$A \div C \boxminus$ Conv cos
Angle b
A \div C \square Conv Sine
Given side B and angle b, find:
Side C
Side A

B $\%$ b $\cos \theta$
B XbTan

APPENDIX A - Pipe Material, Pipe Type And Data Tables

After selecting a Pipe material, you can select Pipe Types for that material and get data for each type, including Outside Diameter, Internal Diameter, Wall Thickness, Pipe Weight per Foot, Filled Weight per Foot, and Internal Area.

PIPE MATERIALS

Plastic, Copper, Steel, Stainless Steel, Brass, Aluminum and Cast Iron. The default is Steel. The calculator will recall the last material used. After a Clear All or Factory Reset, the default is displayed first.

PIPE TYPES FOR EACH MATERIAL

Stainless Steel
Schedules: 40-S, 80-S, 160, 5-S, 10-S

Plastic

Schedules: 40, 80, 120; SDR 21, SDR 26,
SDR 32.5, SDR 41

Copper

Type L, Type K, Type M, Type DWV, Medical Type L,
Medical Type K, ACR-Annealed, ACR-Drawn

Steel, Brass, Aluminum, Cast Iron

Schedules: Std, 40, 60; XS, 80, 100, 120, 140, 160; XSS, 10, 20, 30

APPENDIX B - Default Settings

After a Clear All ($\mathbf{C o n v} \boldsymbol{X}$), your calculator will return to the following settings:

Stored Values
Default Value

Material	Steel
Pipe Type	Standard
Elbow Type	Long Radius Butt Weld
Weight to Volume	62.42796 pounds per cubic foot
Welder's Gap	$1 / 8$ inch

If you replace your batteries or perform a Full Reset* (press $\mathbf{O H}$, hold down \boldsymbol{X}, and press $\mathbf{O n} / \mathbf{C}$), your calculator will return to the following settings (in addition to those listed above):

Preference Settings	Default Value
Fractional Resolution	$1 / 16$
Area Display	Standard
Volume Display	Standard
Meter Linear Display	0.000
Decimal Degree Display	0.00°
Fractional Mode	Standard
Mathematical Operations	Order of Operations Method
*Depressing the Reset button located above the	
Full Reset.	

APPENDIX C - Preference Settings

The Pipe Trades Pro has Preference Settings that allow you to customize or set desired dimensional formats and calculations. If you replace your batteries or perform a Full Reset* (press $\mathbf{O H f}^{\text {if }}$ hold down \boldsymbol{X}, and press $\mathbf{O n}^{\boldsymbol{n} / \boldsymbol{C} \text {), your calculator will return to the }}$ following settings (in addition to those listed on the previous page):
*Depressing the Reset button located above the 다앙d will also perform a Full Reset. Asterisks below indicate default values.

Preference

Options

1) Fractional Resolution

- *1/16 (displays fractional values to the nearest 16th of an Inch)
- $1 / 32$
- 1/64
$-1 / 2$
$-1 / 4$
$-1 / 8$

2) Area Display Format - *Standard (if units entered are the same-e.g., Feet x Feet-the answer will remain in this format (Square Feet), but if units entered are different - e.g., Inches x Feet-area answer will be displayed in Square Feet)

- Square Feet (area answers always displayed in Square Feet, regardless of unit entry - e.g., Inches x Inches = Square Feet) - Square Inches (area answers always displayed in Square Inches - e.g., Feet x Feet = Square Inches)
- Square Meters (area answers always displayed in Square Meters
- e.g., Feet x Feet = Square Meters)
(cont'd)

3) Volume Display Format - *Standard (if units entered are the same - e.g., Feet x Feet x Feet - the answer will remain in this format (cu. ft), but if units entered are different - e.g., Feet x Feet x Inches - vol. answer will always be displayed in Cubic Feet)

- Cubic Feet (vol. answers always displayed in Cubic Feet, regardless of unit entry - e.g., Inches x Inches x Inches = Cubic Feet)
- Cubic Meters (vol. answers always displayed in Cubic Meters, regardless of unit entry - e.g., Feet \times Feet \times Feet $=$ Cubic Meters)

4) Meter Linear Display - *0.000 (linear Meter answers are always displayed to third decimal place)

- FLOAt (linear Meter answers are displayed to the maximum number of decimal places - e.g., 1.2345
$\mathrm{M}+2.56 \mathrm{M}=3.7945 \mathrm{M}$)

5) Decimal Degree Display $-{ }^{*} 0.00^{\circ}$

- FLOAt

6) Fractional Mode

- *Standard (fractions are displayed to the nearest fraction) - Constant (fractions are displayed in the set fractional resolution)

Note: To check the current Fractional Resolution, press Rc] D. Either "Std" (standard fractional resolution) or "Cnst" (constant) will be displayed, along with the fractional resolution).
7) Mathematical Operation - *Order (the calculator uses the Order of Operation Method (10 + 4 $x 5=30$)

- Chain (the calculator uses the Chaining Method of Operations (as entered: $10+4 \times 5=70$)

APPENDIX D - Constants

For material surface roughness, we use the following:

Material	Roughness Factor
	$\mathrm{e}\left(\times 10^{-6} \mathrm{ft}\right)$
PVC	15.6
Copper	4.9
Steel (low carbon)	221
Stainless Steel (austenitic)	49.2
Brass	4.9
Aluminum	4.9
Cast Iron	850

For water properties:
Viscosity $=0.001$ Pascal-seconds
Density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Depending upon flow type and Reynolds Number value, we use one of the following methods for computing Pressure Loss:

1) Laminar Flow method (if Reynolds Number $<3,000$)
2) Smooth Pipe method (if Reynolds Number $>3,000$ and Boundary Layer Thickness < Pipe Roughness)
3) Prandtl equation method (if Reynolds Number < 100,000 and Pipe Roughness > Boundary Layer Thickness)
4) Karman Equation method (all other conditions)

APPENDIX E - Care Instructions

Please follow the guidelines listed in this section for proper care and operation of your calculator. Not following the instructions listed below may result in damage not covered by your warranty. Refer to the Repair and Return section on page 62 for more details.

Do not expose calculator to temperatures outside the operating temperature range of $32^{\circ} \mathrm{F}-104^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}\right)$.
Do not expose calculator to high moisture such as submersion in water, heavy rain, etc.

APPENDIX F -
 Accuracy/Errors, Auto Shut-Off, Batteries, Reset

Accuracy/Errors

Accuracy/Display Capacity - Your calculator has a twelvedigit display made up of eight digits (normal display) and four fractional digits. You may enter or calculate values up to 19,999,999.99. Each calculation is carried out internally to twelve digits.
Errors - When an incorrect entry is made, or the answer is beyond the range of the calculator, it will display the word "ERROR." To clear an error condition you must hit the On/C button once. At this point you must determine what caused the error and re-key the problem.

Error Codes

MATH Error
DIM Error
ENT Error

Divide by 0
Dimension error
Invalid entry error

Auto-Range - If an "overflow" is created because of an input and calculation with small units that are out of the standard seven-digit range of the display, the answer will be automatically expressed in the next larger units (instead of showing "ERROR") - e.g., $20,000,000 \mathrm{~mm}$ is shown as 20,000 m . Also applies to inches and feet.

Auto Shut-Off

Your calculator is designed to shut itself off after about 8-12 minutes of non-use.

Batteries

The Pipe Trades Pro uses two LR-44 batteries.

Replacing Batteries

Should your calculator display become very dim or erratic, replace the batteries.

Note: Please use caution when disposing of your old batteries, as they contain hazardous chemicals.

Replacement batteries are available at most discount or electronics stores. You may also call Calculated Industries at 1-775-885-4900.

Battery Replacement Instructions

To replace the batteries, slide open the battery door (at top backside of unit) and replace with new batteries. Make sure the batteries are facing positive side up.

Reset

If your calculator should ever "lock up", insert the tip of a paperclip into the small Reset hole located above the to perform a total reset.

APPENDIX G - Formulas

Area Formulas

Rectangle

Area $=1 \mathrm{w}$

Octagon
Area $=(d / 2)^{2} \times 2.828$

Circle

Circumference $=2 \pi r$
Area $=\pi r^{2}$

Ellipse

Area $=\pi a b$

Surface Area/Volume Formulas

Cube

Surface Area $=6 a^{2}$
Volume $=a^{3}$

Cone

Surface Area $=\pi r \sqrt{r^{2}+h^{2}}$
($+\pi r^{2}$ if you add the base)
Volume $=\frac{\pi r^{2} h}{3}$

Sphere

Surface Area $=4 \pi r^{2}$
Volume $=4 / 3 \pi r^{3}$

Cylinder

Surface Area $=2 \pi r h+2 \pi r^{2}$
Volume $=\pi r^{2} h$

WARRANTY, REPAIR AND RETURN INFORMATION

Return Guidelines

1. Please read the Warranty in this User's Guide to determine if your Calculated Industries product remains under warranty before calling or returning any device for evaluation or repairs.
2. If your product won't turn on, check the batteries as outlined in the User's Guide.
3. If you need more assistance, please go to the website listed below.
4. If you believe you need to return your product, please call a Calculated Industries representative between the hours of 7:00am to 4:30pm Pacific Time for additional information and a Return Merchandise Authorization (RMA).

Call Toll Free: 1-800-854-8075
Outside USA: 1-775-885-4900
www.calculated.com/warranty

Warranty

Warranty Repair Service - U.S.A.

Calculated Industries ("Cl") warrants this product against defects in materials and workmanship for a period of one (1) year from the date of original consumer purchase in the U.S. If a defect exists during the warranty period, Cl at its option will either repair (using new or remanufactured parts) or replace (with a new or remanufactured calculator) the product at no charge.
THE WARRANTY WILL NOT APPLY TO THE PRODUCT IF IT HAS BEEN DAMAGED BY MISUSE, ALTERATION, ACCIDENT, IMPROPER HANDLING OR OPERATION, OR IF UNAUTHORIZED REPAIRS ARE ATTEMPTED OR MADE. SOME EXAMPLES OF DAMAGES NOT COVERED BY WARRANTY INCLUDE, BUT ARE NOT LIMITED TO, BATTERY LEAKAGE, BENDING, A BLACK "INK SPOT" OR VISIBLE CRACKING OF THE LCD, WHICH ARE PRESUMED TO BE DAMAGES RESULTING FROM MISUSE OR ABUSE.
To obtain warranty service in the U.S., please go to the website. A repaired or replacement product assumes the remaining warranty of the original product or 90 days, whichever is longer.

Non-Warranty Repair Service - U.S.A.

Non-warranty repair covers service beyond the warranty period, or service requested due to damage resulting from misuse or abuse. Contact Calculated Industries at the number listed above to obtain current product repair information and charges. Repairs are guaranteed for 90 days.

Repair Service - Outside the U.S.A.

To obtain warranty or non-warranty repair service for goods purchased outside the U.S., contact the dealer through which you initially purchased the product. If you cannot reasonably have the product repaired in your area, you may contact Cl to obtain current product repair information and charges, including freight and duties.

Disclaimer

CI MAKES NO WARRANTY OR REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT'S QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. AS A RESULT, THIS PRODUCT, INCLUDING BUT NOT LIMITED TO, KEYSTROKE PROCEDURES, MATHEMATICAL ACCURACY AND PREPROGRAMMED MATERIAL, IS SOLD "AS IS," AND YOU THE PURCHASER ASSUME THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.
IN NO EVENT WILL CI BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE PRODUCT OR ITS DOCUMENTATION.
The warranty, disclaimer, and remedies set forth above are exclusive and replace all others, oral or written, expressed or implied. No Cl dealer, agent, or employee is authorized to make any modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific rights, and you may also have other rights, which vary from state to state.

FCC Class B

This equipment has been certified to comply with the limits for a Class B calculating device, pursuant to Subpart J of Part 15 of FCC rules.

Legal Notes

Software copyrighted and licensed to Calculated Industries by Construction Master Technologies, LLC, 2009. User's Guide copyrighted by Calculated Industries, Inc., 2009.
Pipe Trades Pro ${ }^{\text {TM }}$ is trademarked and Calculated Industries ${ }^{\circledR}$ is a registered trademark of Calculated Industries, Inc.

> ALL RIGHTS RESERVED
> Designed in the U.S.A.

Looking For New Ideas

Calculated Industries, a leading manufacturer of special-function calculators and digital measuring instruments, is always looking for new product ideas in these areas.
If you have a new product idea, please visit our "Bright Idea" page at www.calculated.com/brightidea.asp. For suggestions about improving this product or other products, please visit us at www.calculated.com under "Contact Us". Thank You.

